

ENVIRONMENTAL PRODUCT DECLARATION (EPD) ACCORDING TO STANDARD SN EN 15804+A2:2019

swissporXPS, insulation boards made of extruded polystyrene

The SN EN 15804+A2 [1] standard serves as PCR ^{a)}							
Independent verification of th	e declaration and data according to EN ISO 14025:2010 [2]						
□ inter	nal 🛛 external						
Verific	ation by an independent third party:						
	Martina Alig						
	Intep						
	Integrale Planung GmbH						
	Pfingstweidstrasse 16						
	CH – 8005 Zürich						
^{a)} Product category rules							
Owner and publisher of the	swisspor Management AG						
Environmental Product	CH-6312 Steinhausen						
Declaration	www.swisspor.ch						
Declaration number swisspor_EPD_XPS_2022.11							
Date of issue	November 2022						
Validity time	5 years from date of issue						

The French version of this Environmental Product Declaration is authoritative. No responsibility is taken for the correctness of the translations.

DECLARATION OF GENERAL INFORMATION

Name and address of the manufacturer

Alporit AG / swisspor management AG Industriestrasse 559 CH-5623 Boswil

For any information regarding the information contained in this Environmental Product Declaration (EPD), please contact swisspor Management AG (info@swisspor.com).

Application of the product

Products made of extruded polystyrene (XPS) have the task of thermally insulating a new or renovated building, allowing lower energy consumption for heating needs. The thermal conductivity of the material determines the thickness of the panels to be installed, according to the thermal performance of the building that is sought. The product studied is a grouping of different panels whose thermal conductivity ranges from 0.033 W/(m.K) to 0.035 W/(m.K).

Product identification

XPS- Insulation products consist of rigid boards that are applied to the elements of the building envelope (facade, roof, floor), usually on the outside to avoid thermal bridges.

The product swissporXPS is an average product, which is composed of the following

Trade references compiled:

- swissporXPS 300 SO/SF/GE
- swissporXPS 500 SF/GE
- swissporXPS 700 SF/GE

Declared unit

The declared unit is 1 kg of packed XPS board with an average density of 34.3 kg/m³. The average density is calculated in relation to the produced quantities of each of the trade references included in the product swissporXPS. The packaging material is included in the LCA.

Description of the main components

The sheets are produced by an extrusion process from a heated mixture of polystyrene, blowing agents and additives.

Polystyrene is in the form of loose, non-adherent granules, also known as "polystyrene crystal". It is obtained from non-renewable resources (petroleum industry).

Ethanol (alcohol), dimethyl ether (DME) and carbon dioxide (CO₂) are used as blowing agents. Additives are added in small proportions, they are flame retardants or dyes.

Program holder

The program holder of the EPD is the company swisspor Management AG.

Considered phases

The following life cycle phases were considered:

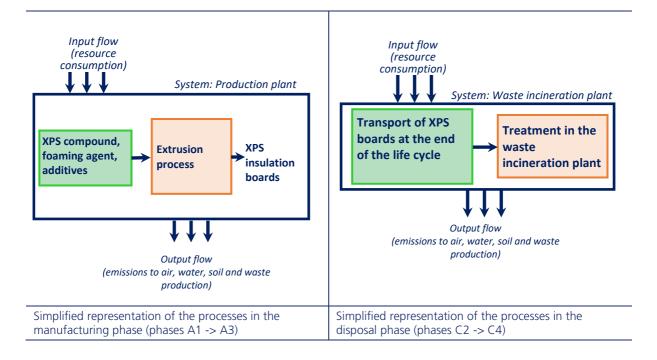
- the manufacturing phase up to the factory gate (phases A1 to A3);
- the transport and waste treatment phase at the end of the life cycle (phases C1 to C4);
- the benefits and impacts across system boundaries (Module D).

EPDs of construction products are not comparable if they do not comply with the SN EN 15804+A2:2019 standard [1].

Variability of results (average product)

The variability of the results between the products declared within this EPD is very low. Only the density of the combined products changes, which means a different concentration of the original mixture, but an identical composition for one kilogram of the product.

Declaration of the material product content according to the candidate list for an authorization by the European Chemicals Agency (REACH Regulation)


The company certifies that its XPS products are free of substances included in the European Chemicals Agency's candidate list for approval.

DECLARATION OF ENVIRONMENTAL PARAMETERS FROM THE LIFE CYCLE ASSESSMENT

General information

The following figures show the flowcharts of the processes covered in the LCA for each of the life cycle phases considered.

Rules for the declaration of information from the LCA by module

This is an EPD of the "cradle to gate" type with modules C1-C4 and module D, issued by the company swisspor Management AG.

	Information on the system boundaries (X = included in the LCA; NDM = non-declared module)															
Pro	duct st	age	Constr	ruction s stage		Use stage End of life stage						Benefits and loads beyond the system boundary				
Raw material supply	Transport	Manufacturing	Transport	Construction/installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction/ demolition	Transport	Waste processing	Disposal	Reuse-, Recovery-, Recycling - potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	B6	В7	C1	C2	C3	C4	D
Χ	Χ	Χ	NDM	NDM	NDM	NDM	NDM	NDM	NDM	NDM	NDM	Х	Х	Х	Χ	X

Parameters for the description of environmental impacts

1. environmental impact indicators

Indicator	unit	Product stage A1–A3	End of life stage C1 (Demolition)	End of life stage C2 (Transport)	End of life stage C3 (Waste processing)	End of life stage C4 (Disposal)	Module D
Global Warming Potential – total (GWP-total)	kg CO2 eq.	4,11	6,83E-3	1,7E-3	2,34E-3	3,09	-2,35E-1
Global Warming Potential – fossil fuels (GWP-fossil)	kg CO2 eq.	4,08	6,82E-3	1,69E-3	2,26E-3	3,09	-2,72E-1
Global Warming Potential – biogenic (GWP-biogenic)	kg CO2 eq.	2,92E-2	9,48E-6	5,58E-6	7,83E-5	2,79E-4	3,66E-2
Global Warming Potential – Iuluc (GWP-Iuluc)	kg CO2 eq.	9,32E-4	1,13E-6	6,91E-6	4,15E-6	3,64E-5	-3,66E-4
Depletion potential of the stratospheric ozone layer (ODP)	kg CFC-11 eq.	1,42E-8	1,03E-10	5,3E-11	2,49E-10	3,26E-9	-3,7E-8
Acidification potential, Accumulated Exceedance (AP)	mol H+ eq.	1,4E-2	3,25E-5	6,3E-6	6,75E-6	3,99E-4	-7,84E-4
Eutrophication potential - freshwater (EP-freshwater)	kg P eq.	1,0E-4	3,03E-7	1,39E-7	1,4E-6	3,87E-6	-1,22E-4
Eutrophication potential - marine (EP-marine)	kg N eq.	2,18E-3	1,24E-5	2,06E-6	2,24E-6	2,25E-4	-2,62E-4
Eutrophication potential - terrestrial (EP-terrestrial)	mol N eq.	2,37E-2	1,34E-4	2,07E-5	2,13E-5	1,99E-3	-2,68E-3
Photochemical Ozone Creation Potential (POCP)	kg NMVOC eq.	2,49E-2	4,25E-5	7,71E-6	6,66E-6	5,03E-4	-8,6E-4
Abiotic depletion potential - non-fossil resources (ADPE) ¹	kg Sb eq.	1,34E-6	3,09E-9	4,15E-9	3,41E-9	4,99E-8	-3,86E-7
Abiotic depletion potential - non-fossil resources (ADPF) ¹	MJ	84,74	8,53E-2	2,34E-2	0,10	0,47	-9,98E+0
Water (user) deprivation potential (WDP) ¹	m³ world eq. deprived	826,23	0,18	9,47E-2	4,87	2,18	-4,18E+2
Potential incidence of disease due to PM emissions (PM)	Disease incidence	1,25E-7	1,53E-10	1,4E-10	5,69E-11	2,15E-9	-3,58E-8
Potential Human exposure efficiency relative to U235 (IRP) ²	kBq U235-eq.	3,0E-2	2,16E-4	1,47E-4	8,73E-3	2,66E-3	-7,5E-1
Potential Comparative Toxic Unit for ecosystems (ETP-fw) ¹	CTUe	3,72	7,59E-2	2,58E-2	3,27E-2	15,82	-2,71E+0
Potential Comparative Toxic Unit for humans - cancer effects (HTP-c) ¹	CTUh	6,15E-10	4,05E-12	5,28E-13	1,16E-12	1,93E-10	-1,92E-10
Potential Comparative Toxic Unit for humans - non-cancer effects (HTP-nc) ¹	CTUh	1,33E-8	5,98E-11	2,91E-11	1,71E-11	7,91E-9	-2,93E-9
Potential Soil quality index (SQP) ¹	dimensionless	0,84	4,39E-3	-3,66E-3	1,82E-2	4,4E-2	-1,27E+1

¹ Disclaimer 1: Results for these environmental impact categories should be used with caution due to high uncertainties in these results or limited experience with this indicator.

² Disclaimer 2: This impact category mainly concerns the possible effects on human health of low-dose ionizing radiation from the nuclear fuel cycle. It does not consider the consequences of possible nuclear accidents, occupational exposure, or disposal of radioactive waste in underground facilities. This indicator also does not measure potential ionizing radiation from soil, radon, and certain building materials.

2. indicators to describe the use of resources.

Indicator	unit	Product stage A1–A3	End of life stage C1 (Demolition)	End of life stage C2 (Transport)	End of life stage C3 (Waste processing)	End of life stage C4 (Disposal)	Module D
Use of renewable primary energy as energy carrier (PERE)	MJ	4,90	8,24E-4	1,2E-3	2,59E-2	1,36E-2	-5,83E+0
Use of renewable primary energy resources used as raw materials (PERM)	MJ	0	0	0	0	0	0
Total use of renewable primary energy (PERT)	MJ	4,90	8,24E-4	1,2E-3	2,59E-2	1,36E-2	-5,83E+0
Use of non renewable primary energy as energy carrier (PENRE)	MJ	53,21	8,53E-2	2,35E-2	0,10	0,47	-9,98E+0
Use of non renewable primary energy resources used as raw materials (PENRM)	MJ	31,53	0	0	0	0	0
Total use of non-renewable primary energy resource (PENRT)	MJ	84,74	8,53E-2	2,35E-2	0,10	0,47	-9,98E+0
Use of secondary material (SM)	kg	0	0	0	0	0	0
Use of renewable secondary fuels (RSF)	MJ	0	0	0	0	0	0
Use of non-renewable secondary fuels (NRSF)	MJ	0	0	0	0	0	0
Net use of fresh water (FW)	m³	19,24	4,15E-3	2,22E-3	0,11	5,09E-2	-9,72E+0

3. environmental information describing categories of waste

Indicator	unit	Product stage A1–A3	End of life stage C1 (Demolition)	End of life stage C2 (Transport)	End of life stage C3 (Waste processing)	End of life stage C4 (Disposal)	Module D
Hazardous waste disposed (HWD)	kg	4,29E-2	9,5E-5	3,63E-5	2,75E-5	4,71E-2	-3,3E-3
Non harzardous waste disposed (NHWD)	kg	6,83E-2	1,79E-4	1,97E-4	5,29E-4	4,25E-2	-5,68E-2
Radioactive waste disposed (RWD)	kg	4,28E-6	3,05E-8	1,93E-8	1,06E-6	3,58E-7	-9,09E-5

4. environmental information to describe output flows

Indicator	unit	Product stage A1–A3	End of life stage C1 (Demolition)	End of life stage C2 (Transport)	End of life stage C3 (Waste processing)	End of life stage C4 (Disposal)	Module D
Components for re-use (CRU)	kg	0	0	0	0	0	0
Materials for recycling (MFR)	kg	1,53E-3	0	0	0	0	0
Materials for energy recovery (MER)	kg	4,6E-4	0	0	0	0	0
Exported electrical energy (EEE)	MJ	4,18E-2	0	0	0	3,93	0
Exported thermal energy (EET)	MJ	8,12E-2	0	0	0	7,60	0

The results of the environmental impact indicators in Figure 1 were calculated using the characterization factors of the environmental impact assessment methods included in the EN 15804+A2 standard and implemented in the Simapro version 9.1 software (see the accompanying report to this EPD)[3].

The deconstruction (C1), transport to disposal (C2), and waste treatment prior to disposal (C3) steps represent minimal impacts on all impact categories compared to the production step (A1-A3) and, to a lesser extent, the product disposal step (C4) (see Figure 1).

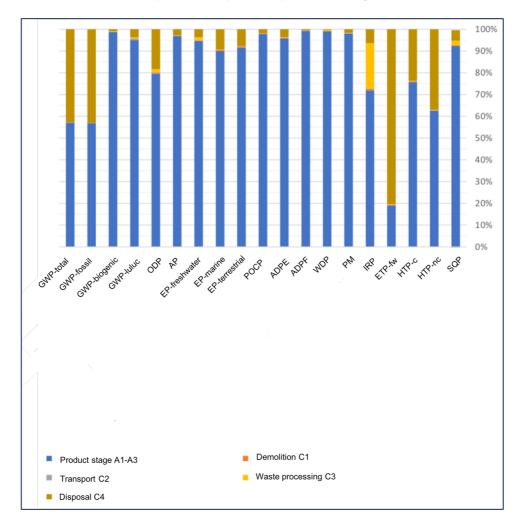


Figure 1: Contributions of life cycle phases to impacts by category.

SCENARIOS AND ADDITIONAL TECHNICAL INFORMATION

Disposal

The disposal scenario at the end of the service life of swissporXPS insulation materials corresponds to the average disposal processes identified in Switzerland in the KBOB database. This average scenario includes 96.5 % municipal incineration with energy recovery and 3.5 % landfilling of waste. The energy recovery efficiency reported in the KBOB database is 28.51% for heat and 15.84% for electricity. According to the SN EN 15804+A2:2019 standard, the total efficiency is less than 60%, so it cannot be assumed that the material is intended for energy recovery. However, the energy recovered during combustion is still counted in the calculation of module D.

Process	Unit (per declared unit)	End of life stage C1–C4
Collection method specified by type	kg collected separately	0,00
	kg collected as mixed construction waste	1,00
	kg for reuse	0,00
Retrieval method specified by type	kg for recycling	0,00
	kg for energy recovery	0,00
Disposal, specified by type	kg Product or material for final disposal, incineration	0,965
	kg Product or material for final disposal, landfill	0,035
Efficiency of energy recovery during combustion, specified by type	% Heat	28,51%
	% Electricity	15,84%

Other impact indicators

The method report [3] served as the methodological basis for calculating the environmental impact indicators required by the SN EN 15804+A2:2019 standard as well as the indicators commonly used in Switzerland for construction products. These additional indicators correspond to the KBOB list 2009/1:2022:

- Environmental impact points (UBP) according to the ecological scarcity method 2021;
- Global warming potential;
- non-renewable primary energy
- renewable primary energy

The table below contains the impact data verified by Martina Alig according to KBOB recommendation 2009/1:2022:

Indicator	unit	Product stage A1–A3	End of life stage C1–C4
Environmental impact points (ecological scarcity method 2021)	UBP	6060	3280
Greenhouse gas emissions	kg CO2 eq.	3,99	3,09
Primary energy, non-renewable	kWh	27,5	0,20
Energetically recovered (production)	kWh	18,11	
Recycled as material (production)	kWh	9,40	
Primary energy, renewable	kWh	0,73	0,015
Energetically recovered (production)	kWh	0,73	
Recycled as material (production)	kWh	0	
Biogenic carbon content	kg C	0	0

LITERATURE

- [1] SN EN 15804+A2:2019, "Sustainability of construction works Environmental product declarations Basic rules for the product category construction products" 2019.
- [2] SN EN ISO 14025:2010-8, "Environmental labels and declarations Type III Environmental declarations Principles and procedures" 2010.
- [3] M. Frossard, G. Talandier, und S. Lasvaux, "Rapport méthodologique d'écobilan de produits swisspor en lés d'étanchéité bitumineux selon les règles de la plate-forme d'écobilan KBOB 2009/1:2022 et de la norme SN EN 15804+A2:2019," Yverdon-les-Bains, Switzerland, 2022.